{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "Y30FK5CHTRZ9" }, "source": [ "#**Workshop 5: Functions**\n" ] }, { "cell_type": "markdown", "metadata": { "id": "cMHKRoQeTVbj" }, "source": [ "##**Objectives**\n", "At the end of this workshop, you will be able to:\n", "* Explain the purpose of functions\n", "* Write a function\n", "* Call a function\n", "* Identify the difference between local and global variables\n", "* Use help to display documentation for built-in functions.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "L1e6_Zo-Tj9O" }, "source": [ "##**What is a function? Why should I bother writing them?**\n", "A group of statements that exist within a program for the purpose of performing a specific task\n", "Many benefits:\n", "* Simpler code\n", "* Better testing\n", "* Easier facilitation of teamwork\n", "* Faster development\n" ] }, { "cell_type": "markdown", "metadata": { "id": "3jMP7smFaXF3" }, "source": [ "##**Writing a function**\n", "\n", "\n", "\n", "```\n", "def function_name():\n", " Statement\n", " Statement\n", " Etc\n", "```\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "pI842Laiam5z" }, "source": [ "##**Calling a function**\n", "\n", "\n", "\n", "```\n", "Function_name()\n", "```\n", "\n" ] }, { "cell_type": "code", "metadata": { "id": "9oerHazwZT8G" }, "source": [ "def message():\n", "print('Sometimes I buy flour from King Arthur')\n", "print(\"Sometimes I don’t\")\n", "\n", "message()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "b1j5JwcQUCaj" }, "source": [ "##**You can define as many functions as needed in a program**\n", "\n" ] }, { "cell_type": "code", "metadata": { "id": "QQ6uq9G3UQnE" }, "source": [ "def main():\n", " print('I have a message for you.')\n", " message()\n", " print(\"good bye!\")\n", "\n", "def message():\n", " print(\"Sometimes I buy flour from King Arthur\")\n", " print(\"Sometimes I don’t\")\n", "\n", "main()\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "hmtOIazJUgke" }, "source": [ "##**Use Pseudo code to stay organized**\n", "\n", "![psuedocode.jpg]()\n" ] }, { "cell_type": "markdown", "metadata": { "id": "UVSQEXf2t1kC" }, "source": [ "Below is the python code for the above pseudo code. If it wasn't chunked into functions, it would be harder to find all of the error messages and later debut (don't worry there are no errors with this code!)\n" ] }, { "cell_type": "code", "metadata": { "id": "PcyunWRrUquf" }, "source": [ "#generate random numbers\n", "import random\n", "\n", "#constants for menu choices\n", "ADDITION = 1\n", "SUBTRACTION = 2\n", "MULTIPLICATION = 3\n", "DIVISION = 4\n", "RANDOM_PROBLEM = 5\n", "QUIT = 6\n", "\n", "def main():\n", " #menu: set value of choice to zero\n", " selection = 0\n", "\n", " #pick easier or hard variables\n", " easy = 1\n", " hard = 2\n", " level = 0\n", "\n", " #display menu\n", " while selection != QUIT:\n", " display_menu()\n", "\n", " #get user choice\n", " selection = int(input(\"Select your problem set: \"))\n", "\n", " #perform choice\n", " while level == 0:\n", " if selection == ADDITION:\n", " print(\"Select '1' for easy problems or '2' for hard problems\")\n", " level = int(input(\"Would you like easy or hard problems?\"))\n", " if level == easy:\n", " easy_add()\n", " elif level == hard:\n", " hard_add()\n", " else:\n", " level = 0\n", " print('Error: Invalid selection.')\n", " elif selection == SUBTRACTION:\n", " print(\"Select '1' for easy problems or '2' for hard problems\")\n", " level = int(input(\"Would you like easy or hard problems?\"))\n", " if level == easy:\n", " easy_sub()\n", " elif level == hard:\n", " hard_sub()\n", " else:\n", " level = 0\n", " print('Error: Invalid selection.')\n", " elif selection == MULTIPLICATION:\n", " print(\"Select '1' for easy problems or '2' for hard problems\")\n", " difficulty = int(input(\"Would you like easy or hard problems?\"))\n", " if level == easy:\n", " easy_mult()\n", " elif level == hard:\n", " hard_mult()\n", " else:\n", " level = 0\n", " print('Error: Invalid selection.')\n", " elif selection == DIVISION:\n", " print(\"Select '1' for easy problems or '2' for hard problems\")\n", " level = int(input(\"Would you like easy or hard problems?\"))\n", " if level == easy:\n", " easy_div()\n", " elif level == hard:\n", " hard_div()\n", " else:\n", " level = 0\n", " print('Error: Invalid selection.')\n", " elif selection == RANDOM_PROBLEM:\n", " print(\"Select '1' for easy problems or '2' for hard problems\")\n", " level = int(input(\"Would you like easy or hard problems?\"))\n", " if level == easy:\n", " easy_random()\n", " elif level == hard:\n", " hard_random()\n", " else:\n", " level = 0\n", " print('Error: Invalid selection.')\n", " else:\n", " print('Error: Invalid selection.')\n", " selection = int(input(\"Select your problem set: \"))\n", "\n", " print()\n", " print('Thanks for playing!')\n", "#desplay menu function\n", "def display_menu():\n", " print('Menu Options:')\n", " print('1.) Addition problems')\n", " print('2.) Subtraction problems')\n", " print('3.) Multiplication problems')\n", " print('4.) Division problems')\n", " print('5.) Random problems')\n", " print('6.) Quit')\n", "\n", "#addition functions\n", "#easy addition problems\n", "def easy_add():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,10)\n", " num2 = random.randint(1,10)\n", " num3 = num1 + num2\n", " print(num1, \"+\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "#hard addition problems\n", "def hard_add():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,100)\n", " num2 = random.randint(1,100)\n", " num3 = num1 + num2\n", " print(num1, \"+\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#subtraction functions\n", "\n", "#easy subtraction probelms\n", "def easy_sub():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,10)\n", " num2 = random.randint(1,10)\n", "\n", " #make sure no neg numbers\n", " if num1 > num2:\n", " num3 = num1 - num2\n", " print(num1, '-', num2, '=')\n", " else:\n", " num3 = num2 - num1\n", " print(num2, '-', num1, '=')\n", "\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", "\n", "#hard subtraction problems\n", "def hard_sub():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,100)\n", " num2 = random.randint(1,100)\n", "\n", " #make sure no neg numbers\n", " if num1 > num2:\n", " num3 = num1 - num2\n", " print(num1, '-', num2, '=')\n", " else:\n", " num3 = num2 - num1\n", " print(num2, '-', num1, '=')\n", "\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", "\n", "#multiplication functions\n", "\n", "#easy multiplcation problems\n", "def easy_mult():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,10)\n", " num2 = random.randint(1,10)\n", " num3 = num1 * num2\n", " print(num1, \"x\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#hard multiplication problems\n", "def hard_mult():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,100)\n", " num2 = random.randint(1,100)\n", " num3 = num1 * num2\n", " print(num1, \"x\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#division fuctions\n", "\n", "#easy division problems\n", "def easy_div():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,10)\n", " num2 = random.randint(1,10)\n", " num3 = (num1 * num2)/num2\n", " print()\n", " print((num1 * num2), \"/\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "def hard_div():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,100)\n", " num2 = random.randint(1,100)\n", " num3 = (num1 * num2)/num2\n", " print((num1 * num2), \"/\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#random problem functions\n", "def easy_random():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,10)\n", " num2 = random.randint(1,10)\n", " prob = random.randint(1,4)\n", " #addition\n", " if prob == 1:\n", " num3 = num1 + num2\n", " print(num1, \"+\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #subtraction\n", " elif prob == 2:\n", "\n", " if num1 > num2:\n", " num3 = num1 - num2\n", " print(num1, '-', num2, '=')\n", " else:\n", " num3 = num2 - num1\n", " print(num2, '-', num1, '=')\n", "\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #multiplication\n", " elif prob == 3:\n", " num3 = num1 * num2\n", " print(num1, \"x\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #division\n", " else:\n", " num3 = (num1 * num2)/num2\n", " print()\n", " print((num1 * num2), \"/\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#hard random problems\n", "def hard_random():\n", " attempts = 10\n", " correct = 0\n", " for total in range(attempts):\n", " num1 = random.randint(1,100)\n", " num2 = random.randint(1,100)\n", " prob = random.randint(1,4)\n", " #addition\n", " if prob == 1:\n", " num3 = num1 + num2\n", " print(num1, \"+\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #subtraction\n", " elif prob == 2:\n", "\n", " if num1 > num2:\n", " num3 = num1 - num2\n", " print(num1, '-', num2, '=')\n", " else:\n", " num3 = num2 - num1\n", " print(num2, '-', num1, '=')\n", "\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #multiplication\n", " elif prob == 3:\n", " num3 = num1 * num2\n", " print(num1, \"x\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " #division\n", " else:\n", " num3 = (num1 * num2)/num2\n", " print()\n", " print((num1 * num2), \"/\", num2, \"=\")\n", " print()\n", " total = int(input(\"What is the answer?\"))\n", " if total == num3:\n", " correct+=1\n", " print()\n", " correct_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", " else:\n", " print()\n", " wrong_random()\n", " print()\n", " print(\"******************\")\n", " print()\n", "\n", " print('Grade:', (correct/attempts)*100)\n", " print()\n", " print(\"******************\")\n", "\n", "#random message generators\n", "def correct_random():\n", " correct_answer = [\"That's right!\", \"Awesome!\", \"Great work!\", \"Right on!\", \"Keep it up!\"]\n", " print(random.choice(correct_answer))\n", "\n", "def wrong_random():\n", " wrong_answer = [\"Rats!\", \"WOMP!\", \"Try again!\", \"Wrong!\", \"You'll get it next time!\"]\n", " print(random.choice(wrong_answer))\n", "\n", "#call the main function\n", "main()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "6rpcdN2NYDWq" }, "source": [ "##**Local variables vs Global Variables**\n", "Local variable: used inside a function and cannot be accessed by statements that are outside the function\n", "\n", "Global variable: live outside functions and are accessible to all functions in a program file, this is not best practice\n" ] }, { "cell_type": "code", "metadata": { "id": "MMTHgGkgYHYt" }, "source": [ "#Local variable example, results in error message\n", "\n", "def main():\n", " get_name()\n", " print('Hello', name)\n", "\n", "def get_name():\n", " name = input('Enter your name: ')\n", "\n", "main()\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "CMXipiNwc85t" }, "source": [ "#Global variable example, results in working code\n", "\n", "number = 0\n", "\n", "def main():\n", " global number\n", " number = int(input('Enter a number: '))\n", " show_number()\n", "\n", "def show_number():\n", " print('the number you entered is', number)\n", "\n", "main()\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "dGXgzKmxYe7M" }, "source": [ "##**Use “return” to use a local variable globally**\n", "\n", "Instead of using global variables, it’s better to use a local variable globally.\n" ] }, { "cell_type": "code", "metadata": { "id": "shet1Bfkf5ka" }, "source": [ "def main():\n", " first_age = int(input('enter your age:'))\n", " second_age = int(input('enter your age:'))\n", " total = sum(first_age, second_age)\n", " print('together you are', total, 'years old.')\n", "\n", "def sum(num1, num2):\n", " result = num1 + num2\n", " return result\n", "\n", "main()\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "u9iP0HCQcqPM" }, "source": [ "##**Built in Functions**\n", "\n", "* print() - prints a statement\n", "* max() - finds the largest value of one or more values\n", "* min() - finds the smallest value of one or more values\n", "* round() - returns a floating point number that is a rounded version of the specified number\n", "\n", "More found here: https://docs.python.org/3/library/functions.html" ] }, { "cell_type": "code", "metadata": { "id": "IKXHZj58c0IL" }, "source": [ "print(max(1, 2, 3))\n", "print(min('a', 'A', '0'))\n", "print(max(1, 'a'))" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "bsNfP9AYeYf7" }, "source": [ "##**Use \"help\" to get help for a function**" ] }, { "cell_type": "code", "metadata": { "id": "_tvVkCedefP1" }, "source": [ "help(max)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "5uEJmOC2ehAK" }, "source": [ "help(print)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Sbojgd0Lfwc8" }, "source": [ "##**Try it yourself!**\n", "\n", "Take a look at the try it yourselves from the previous weeks and convert a couple of them into functions." ] }, { "cell_type": "code", "metadata": { "id": "vrQaiI-df2rK" }, "source": [], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "YPm0R4_xeioc" }, "source": [ "##**Looking for more practice?**\n", "\n", "W3Schools functions: https://www.w3schools.com/python/python_functions.asp\n", "\n", "Software Carpentry Built in functions: http://swcarpentry.github.io/python-novice-gapminder/04-built-in/index.html\n", "\n", "Software Carpentry Functions: http://swcarpentry.github.io/python-novice-gapminder/16-writing-functions/index.html\n", "\n", "Try programming a game! https://inventwithpython.com/invent4thed/" ] }, { "cell_type": "markdown", "metadata": { "id": "yRVlFpi2ep7J" }, "source": [ "##**Sources**\n", "1. Gaddis T. Starting out with Python. Third edition. Pearson; 2014.\n" ] } ] }